Global Warming in Perspective

I thank Coyote for noting the need to compare temperature anomalies to real temperatures.

We start with a view of global warming to date.  Current estimates for future warming vary, but are on the order of  0.11 degree C per decade.


The HadCrut4 chart shows warming beginning in 1900. Clearly CO2 cannot be the only source of warming.

Now lets look at some real data of the sort you might read on your thermometer.

Data is from Weather Underground,


The little circle contains a scaled version of the HadCrut4 chart with the same vertical scale (4 pixels per degree F).

Given that the range of variation on a daily basis is tens of degrees, and on an annual basis a 100 degrees, even multiples of the historical warming would be hard to observe in real data.



Atmospheric Energy and Global Temperature

In discussions of climate, the use of a statistic “temperature anomaly” has become ubiquitous.  Further, the statistic has taken on the role of temperature in the minds of many people and in many NOAA press releases and web sites. But “temperature anomaly” is not a  temperature in any technical sense of the word “temperature”.

“Temperature” is only defined rigorously for a system at equilibrium, so the action of adding different temperatures by definition denies the validity of all but, at most, one.

If an effect of CO2 is to somehow change the water content of air or to change wind speeds,  averaging temperatures will not show the correct change  in atmospheric heat content.

The measure of heat energy for a fluid is enthalpy.  In joules per kilogram,  the expression for total specific energy,  enthalpy + potential + kinetic is

h = (Cp * T – .026) + q * (L(T) + 1.84 * T) + g * Z + V2/2

Cp is heat capacity, T is temperature in Celsius, q is specific humidity in kg H20/kg dry air, g is gravity, L(T) is latent heat of water ~2501 kJ/kg , Z is altitude, V is wind speed.

This can be converted back to an equivalent temperature with or without the potential and kinetic energy terms.  Adding the wind energy seems to make a “wet stagnation” temperature.

T equivalent = h /Cp

An interesting study is
Pielke shows that the real world difference between equivalent temperature h/Cp and thermometer temperature can be tens of degrees Celsius.

Classical climate data does not include what is necessary to calculate energy to an accuracy better than several percent. This inaccuracy is greater than effects attributable to CO2. Hurricane velocity winds add single degrees of effective temperature, but modest winds can add tenths of degrees.  Evaporation or condensation of water can change temperature by tens of degrees.

I speculate that part of the reason for the never ending adjustment of historical temperatures is an attempt to compensate for the inaccuracies inherent in temperature only estimates of energy.

For a more formal discussion of wet enthalpy,

Regional Equivalent Temperatures

Since enthalpy is an extensive property,  enthalpies of different systems can be added. To construct a regional or global equivalent temperature from a variety of enthalpies, we need two sums: the enthalpies times their mass weight factor, and the weight factors.

T equivalent =  (∑ hi ρ / ∑ ρ )/ Cp

where  ρ  is the mass density and hi is the enthalpy at a point i in the atmosphere.

While we do not have mass densities, we do have the numbers to calculate it:

ρ =  P / (RM T)   where Rm is  R/ effective molecular weight.

Effective molecular weight is   Q Mair + (1-Q) Mwater  where Mair and Mwater are molecular  weights, Q is the ratio of water density to air density, and P is pressure at the point of measure of temperature T.   Note that meteorological pressures are often corrected to sea level and need to be corrected back to the relevant altitude.

T  equivalent =  ∑ hi P / (RM T)   / ( ∑ P / (RM T) ) / Cp

P, T, and Rm will all vary from point to point as well as h.

The following URLs  cover lots of issues.

Parts of this post were presented at and